

Outline

- Beam Use Requests / Physics program
- STAR detector and upgrades for Run 18
- STAR operation, performance & datasets
- Summary

Run 18 Beam Use Requests

Energy	Duration	System	Goals	priority	Sequence
√s _{nn} =200 GeV	3.5-wk 3.5-wk	Zr+Zr Ru+Ru	1.2B min-bias 1.2B min-bias	1	1 2
√s _{NN} =27 GeV	3-wk	Au+Au	1B min-bias	2	3
√s _{NN} =3 GeV(FXT)	2 days	Au+Au	100M min-bias	3	4

Assuming 15 cryo-weeks of running (including CeC test)

BUR: Key physics goals

- Isobar collisions at $\sqrt{s_{NN}}=200 \text{ GeV}$
 - Chirally restored quarks with topological anomaly separated along magnetic field
 - Study the Chiral Magnetic Effect in Ru+Ru(44,96) and Zr+Zr(40,96)
 - 10% difference in magnetic field, everything else the same. Discriminating CME signal from background (5 σ)
- Au+Au at $\sqrt{s_{NN}}=27$ GeV
 - Global angular momentum transfer (vortical coupling) to hyperon polarization
 - High statistics, high precision Lambda, anti-Lambda polarization measurement with respect to event plane
 - (potentially) Direct measurement of magnetic field (3σ) from the polarization difference of Lambda and anti-Lambda
- Au+Au at $\sqrt{s_{NN}}=3$ GeV
 - Fluctuation measurement at energies between HADES (2.2 GeV) and BES-I (7.7 GeV)
 - High statistics in fixed target mode with large acceptance

STAR Detector System

New addition to Run 18

Provided by CBM-FAIR Phase0

• Improves the fixed target program

• PID at $\eta = 0.9$ to 1.5

60 MeV/c

Run I 8: 1 iTPC (/24) sector and 3 ETOF (/36) modules for full scale test before complete installation

EPD (full installation)

iTPC Sector & Electronics

ETOF (3 modules)

new Au Fixed target

EPD performance: enhanced event plane resolution

- Fully installed 16 radial and 24 azimuthal sections covering $2.1 < |\eta| < 5$
- Integrated and operational from the first day of the run
- Extremely uniform response
- Event plane resolution greatly improved especially for peripheral collisions

• Lambda polarization uncertainty
$$\delta P \sim \frac{1}{R_{EP}^{(1)} \times \sqrt{N}}$$

iTPC performance: enhanced acceptance and resolution

- 1(/24) sector installed and successfully operated in Run 18
- performance reaching expectation
- Complete installation of 24 sectors before Run I 9

endcap TOF performance: enhanced forward PID

- 3(/36) modules (-1.5< η <-1.1) commissioned and participated in data taking
- 59 ps counter timing resolution obtained
- complete installation in November 2018

Data taking for isobar collisions: ZrZr, RuRu at √s_{NN}=200 GeV -Requested and performed

- Optimized luminosity: maximum STAR data acquisition rate and minimum background and pile-up
 - Stable luminosity leveling at ZDC ~10K Hz (\mathcal{L} ~2.2 x 10²⁷cm⁻²s⁻¹)
 - Stochastic beam cooling to control emittance
- Rapid (~daily) switching between Ru and Zr: minimize systematic uncertainties
 - 20 hr/store/isobar
- Maximize the purity and reconstruction efficiency: min-bias trigger with tight vertex cut (with VPD ±30cm)

Data taking for isobar collisions: ZrZr, RuRu at $\sqrt{s_{NN}}$ =200 GeV

- Consistently stable luminosity with long (~20 hr) store length
- Min-bias data taking rates ~2k Hz (initial estimate 1.5k Hz)
- "Blind" offline data analysis (Zr vs Ru) will be performed

STAR Data Acquisition Rates

Data collection for isobar collisions: ZrZr, RuRu at \sqrt{s} = 200 GeV

good event fraction ~ 95%

Data taking for AuAu at $\sqrt{s_{NN}}$ =27 GeV and Fixed target at $\sqrt{s_{NN}}$ =3 GeV (and 7.2 GeV)

Au+Au at √sNN=27GeV

- Sampling full delivered luminosity
- I.5 hr store
- Min-bias: VPD or ZDC or BBC+multiplicity with wide vertex cut (good event fraction ~55%)

Fixed Target (Au)

- 3.85 GeV Au beam ($\sqrt{s_{NN}}$ =3 GeV): 0.5 hr store (Detectors stay on between stores)
 - 12 bunch beam
 - Rate tuning/leveling with beam vertical position and size
 - Min-bias: BBC+multiplicity (good event fraction ~90%)
- 26.5 GeV Au beam ($\sqrt{s_{NN}}$ =7.2 GeV) for CeC run
 - Collect data when the available for fixed target collisions at STAR
 - Same data taking configuration as fixed target with 3.85 GeV beam

Data collected for AuAu 27 GeV

485M good min-bias events collected as of 6/13 (vs "revised" goal 700 M)

• FoM for global Lambda polarization: $R_{EP}^* \sqrt{N}$ Great improvement in event plane resolution from EPD expected to bring the data set closer to the physics goal in BUR

delivered_fill21845.txt

Data collection with fixed target

- 3.85 GeV Au beam on yellow [5/31-6/4]
 - 364M min-bias events collected
 - Good event fraction 90%
- 26.5 GeV Au beam during CeC run
 - 47M good min-bias events collected as of 6/13

Data taking with effective feedbacks

- Luminosity optimization
 - Collision rates, stability
- Minimizing background at STAR
 - ex: Resolving issues with unexpected background from gap cleaning
- Fast switching between species, beam energies
 - RuRu, ZrZr balancing
 - CeC (Au 26.5 GeV) / AuAu 13.5+13.5GeV
- Beam tuning on fixed target collisions
 - Using "good" event rates (from HLT/online tracking)

- Very successful operation and physics program in 2018 run
 - Exceeding the goals for isobar collisions at $\sqrt{s_{NN}}$ =200 GeV (~240%) and fixed target at $\sqrt{s_{NN}}$ =3 GeV (~300%) (expected to achieve 80% for $\sqrt{s_{NN}}$ =27 GeV AuAu)
 - New sub-systems installed successfully commissioned
- Looking forward to exciting results from the high quality, high statistics data sets
- Thanks to CAD for the excellent performance

BACKUP Slides

Chiral Magnetic Effect

- Chiral Magnetic Effect: Chirally restored quarks with topological anomaly separated along magnetic field:
 - QCD Topological charge
 - Chiral symmetry restoration
 - Strong magnetic field
- Experimental observation: 2 particle charge correlation WRT reaction plane

CME: decisive test with isobars

- Separate CME/background by changing magnetic field only, with all else constant
- I.2B min-bias events each species: measurement with 5σ significance if 80% observed correlation is background

Global Hyperon Polarization

nature

√s_{NN} (GeV)

New tool to study QGP and relativistic Quantum fluid vorticity

Non-zero global angular momentum transfer to hyperon polarization

10

QCD fluid responds to external field

- Positive Global Hyperon Polarization indicating Vortical coupling
- Current data not able to distinguish
 Lambda/AntiLambda polarization difference due to
 Magnetic coupling)
- (potentially) Direct measure of Magnetic Field
- Need >~x10 more data + improvement in RP resolution (3σ at current central value)

• FoM for polarization measurement $\delta \mathcal{P} \sim \frac{1}{R_{\text{EP}}^{(1)} \times \sqrt{N}}$

Net-proton Fluctuation at low energies

- Near critical point, correlation length diverges: enhancement of non-gaussian moments in net-proton distributions predicted
- With high statistics, establish a bridge between BES and world fixed target data